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Introduction

B

In this paper, there is formulated a linear theory of a
three~dimensional, eléstic continuum which ﬁas some of the
properties:of a crystal lattice as a result of the inclusion,
in the theory, of the idea of the unit cell. Therequations

~ yield wéﬁe-dispersion relations with acoustic and optical
branches of the same character as those found at long wave-
lengths in crystal lattice theories and observed in neutron

scattering experiments., Although specific solutions are not

L O A, B

exhibited in detail, it is apparent from the form of the
equations that there will be interesting surface effects under
conditions of both motion and equilibrium.

_The unit cell may also be interpreted as a molecule of
a polymer, a crystallite of a polycrystal or a grain of a
granular ﬁaterial. The mathematical model of the cell is a
.iinear version of Ericksen and Truesdell's deformable direc-
tors [1]. 1If the cell is made rigid, the equations reduce to
those of a liﬁéar Cosserat continuum [2].

The method of derivation of the equafions is analogous
to one used in deducing two-dimensional equations of high
frequencybvibrations of plates from the three-dimensional
equations o£vclassical'linear~elasticity. By the same tech-
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nique as that employed in passing frdmihigh order theories of
plates to classical theories of plateé, the equations are
shown to reduce, at low frequencies and very long wave-lengths
in isotropic materials, to those of an elasfic continuum with
potential energy-density dependent on strain and strain gra-
dient and kinetic energy-density dependent on vélocity and
velocity gradient.

A linear form of Toupin's generalization [8, Section 71
of couplg-stress theory [5-10] is obtained by eliminating the
difference between the deformations of the unit cell and the
surrounding medium; and linear couple-stress theory itself
is obtained by eliminating, further, the symmetric part of
the strain gradient. Both of these special cases are also

limited to low frequencies and very long-wave-lenths;

1. $inématics
Consider a material volume V, bounded by a surface
s, with X,, i =1,2,3, the rectangular compbnenus of the
material position vector, measured from a fixed origin, and -
x; the components, in the same rectangular frame, of the
spatial position vector. The components of displacement of

a material particle are defined as

ui =‘ xi - xi . (1.1)
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Embedded in each material particle there is assumed to be a

micro-volume V! in which x; and xi are the componehts
of the material and spatial position vectors, respectively,
referred to axes parallel to those of the X5 with origin

fixed in the particle: so that the origin of the coordinates

xi moves with the displacement u. A micro-displacement

yt! is defined: with components
tEx! XL ’ .2)
ui = x; H 7 (1.2)

The absolute values of the displacement-gradients are

assumed to be small in comparison with unity:

ou. du! '
|§§l << 1, d—x:."i ({1 ; (1.3)
i L ¥ . ‘
so that we may write
du;, OJu. .
= x; = aiuj , uy = “j(xi’t)’ (1.4)
i
du! du!
.Eiizz ] E.biu5 , u; = u;(xi,xi,t), (1L.5)

where t is the time.

Assume that the micro-displacement can be expressed
as a sum of products of specified functions of the xi and
arbitrary functions of the x; and t. As an approximation,




retain only a single, linear term of the series:

{ S ué "*iwkj , | (1.6)
where wkj is a function of the x5 and t only. Then

the displacementégradient in the micro-medium is

i I aiu:!!=wij | (1.7)

i.e., the micro-deformation wij is taken to be homogeneous

in the micro-medium V' and non-homogeneous in the macro-

‘medium V. In view of (1.3)2, 'wijlb<< 1.  The symmetric

- part of wij is the micro-strain:

w(lj) = %(’1’13 + le) (108)

and the antisymmetric part is the micro-rotation:

1’[1]] 2 '%(#’13 = WJ.‘L) . | (1-9)

iz ]

' An alternative interpretation of the micro-deformation is

that the quantitiés vij are proportional to the components
of the displacements of the tips of deformable directors, as

described by Bricksen and Truesdell [1]. The *[ij] then
are the components of rotation of the Cosserat triédre [2,p.122]}.

We define the usual strain (now the macro-strain)

€44 E'%(ai“j + ajpi); (1.10)




and also a relative deformation (the difference between the’

macro-displacement-gradient and the micro-deformation)

-Yij = aiuj - 1’1] 2] : (1.11)

and a micro-deformation gradient (the macro-gradient of the

micro-deformation):

All three of the tensors

and X4 are independent

€i3° Vij j ,
of the micro-coordinates xi. Typical components of 7ij.

and Xj 5k are illustrated in Figs. 1 and 2,

The u; and wij are assumed to be single valued

functions of the X; leading to the compatibility equations

emikentjaiajekc =0, (1.13)
emijaixjkt =0, (1.1%)
ai(ejk + oy - yjk) = X5k (1.15)
where ®; is the macro-rotation: : |
®;4 E‘%(aiuj - aj“i) (1.16)

and °ijk is the alternating tensor.
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2. Kinetic and potential eherqies

Let the micro-medium be a parallelepiped with vol-
ume V' and edges of lengths 2di and direction cosines Lij
" .

with respect to the axes x'. ILet x{ be oblique fartesian
. - 1 .

coordinates parallel to the edges di’ respectively. Then

[3’ po 153]

x; = "ijx; ’ . | (2.1),
. | ,
v = 8 “ Lij"ik‘ K dldada R (2..1)2
% L] " 1" .
av: -llzijeikll dxldxadxa . (.'»:.1.)3

Let py be the mass of macro-material per unit

' macro-volume and let p!' be the mass of micro-material per

unit macro-volume. We define a kinetic energy-density (kinetic"

energy per unit macro-volume):

=.l YIRS .]_-.... 1., + ¥ 1! '
T=3 P93 + 3 5. 5 P (u:i uj)(uj-l-uj)dv » (2.2)
wvhere the dot designates aifferentiation with respect to time.
Upon substituting (1.6) and (2.1) in (2.2) and performing the

integration, we find

T = % Pﬁjﬁj '.'% P'dﬁl}kji&j ’ (2-3)1
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where

©
[

2 .
= S A Lt =
dkL dpdq(épxéqxckchx+'sp; q2(ka(L;+ épGGQ3Lk3LL3)'dzk (2.3)

edges of length d parallel-to the axes of x;,

=pyte, I (2.3)

2

3

_and 6ij- is the Kronecker symbol., 1In the case of a cube with

.. =6..,d =4 =d = d. (2.%)

1] 1] 1 2 3

: ' X . 1 25 .
Then the second gexm in (2.3)l reduces to g p'd wijvij
the material is composed wholly of unit cells, M = 0. Then
pt = p. '

For the potential energy-density (potential energy
per unit macro-volume), we assume a function, w,.of the -

W= w(eij ’7,ij”‘ijk) . : (2.5)

A small, rigid rotation of the deformed body is
deséribed by a rotation, mij
and an equal rotation ’w[ij] of the micro-material. The as-

sociated displacements are

'uj R JCTER u5 = xiw[ij]" (2f6)

. If

= constant, of the macro-material
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‘the added éi

The addition of such a displacement leaves W unchanged since

j’yij and Kiqx are zeré. 7 .
The assumptions (1.6), (2.2) and (2.5) are the minimum
that will lead to equations which yieid the desired dispersion

relations for plane waves: including longitudinal and transverse

acoustic and optical branches, More or less thant (1.6),’(2.2)

" and (2.5) would be more or less than what is required.

The unit cell is taken to be a parallelepiped in
order to represent the unit cell of é crystal lattice. How-
ever, another shape would only change the tenQbr dié' Also,
the cell can be interpreted as a molecule of a polymer, a

crystallite of a polycrystal or a grain of a granular material.

3. Variational equation of motion

We write Hamilton's principle for independent varia-
tions 6ui and 6wij between fixed limits of u, and wij

at times to and tl:

t ot
6f (T-W)at + [ s W dt =0 , (3.1)
tO . to y .

where 7 and W are the total kinetic and potential energies:

T a [ rav, W= [ wav (3.2)
v v

and 67’; is the variation of the work done py external forces.
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In the usual way (4, p. 166]), we find, from (2.3)1
and (3.2)1, |
t | : t 9.5 1 ,q2 % -
6{07 dt = -{ dt {,(puj ug+ 3 p‘dwpmwjk)dv. | (3.3_)
. o

As for the variation of potential energy, we first

- define

Tij % Be, ~ Ty - (3.m),

%55 = Jy.. ¢ (3.8,

_ _dW |
Hijx= axijk . o (3-4)3

Then

W= Ti3%€i3 * 0133 * MidRigee
= Tyd50uy + 0y5(3y0uy = BYyy) + i 00y
.- 3 [(ryy + aij)éuj]' - ai(rij-r-u;j)&uj - 0340955
P 25 (k530 3x) = dgbygphy -

Applying the divergence theorem, we find




.

~11-

OW = [ bWav
v

. * » o i " » ;‘ H . -
+ 1. (T {4 + PP { . + : . 3 5

The form of (3.5) is the motivation for the adoption
of the following form for the variation of work done by ex-

ternal forces;
W = [ £.6u.dV + [ ¢, 6w., dV + _5u.dS + R .
7o £ J T5ct¥5aV + [ £ydusds [ Tycd¥ 5398
(3.6)

The definitions of uj aﬁd wjk’ and the fact that
the integrands of the volume and surface integrals represent
variations of work per unit voluhe and area, yield the physical
significénces of the coefficients of 6uj and 6wjkﬂ Thus, .
fj is the body force per unit volume and- tj- is the surface
force per unit area (st:ess-vector or traction); ij "is to
be .interpreted as a double force per unit volume [4, p. 187]
and Tjk as a double force per unit area. The diagonal terms
of ojkv and Tjk are double forces without moment and the
off-diagonal terms are double forces with moment. The antisym-
metric part Q[jk] of the body double force °jk‘ is the body

couple. The antisymmetric part T[jk] of the double traction




Tjk is the Cosserat couple-stress vector; In both ¢jk and
Tjk’ the first subécript gives the orientation of the lever
arm between the forces and the second subscript gives the
orientation of the forces. Across a surface with its outward
normal in the positive direction, the force at the positive
end of the lever arm acts in the positive direction. ("Positive"
iefers to the positivé sense of the coordinate axis parallel
to the lever arm or force). Across a surface with its out-
word normal in the negativg direction, the directions of the
forces are reversed,

- Substituting (3.3), (3.5) and (3.6) in (3.1), and
drdpping the integration with respect to time, we obtain the

variational equation of motion:

EX S5

é(airij + aioij + £y - piij)aujdv

I S AT}
+ é(aiuijk+ o5t ¢jk- 3 p'djc#tk)awjkdv

oo TS i T BT n e e e e

R TR S

+ é [tj-ni(fij+cij)]6ujds + é(rjk-nigijk)avjkdsao .

(3.7)
; 4, Stress-equations of motion and boundary conditions
% From the variational equation of motion, there fol-.
3
g low immediately the twelve stress-equations of motion:

PRI T A &
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stress for Tij’ relative stress for ;. and double stress for

..) ¥ £. =
ij) * £5 = pu

ai(Tij + 0

+
©
|

C9%Migk %kt Yk T3 P Y (.1),

and the twelve traction boundary conditions:

tj = ni,'(‘r'ij + oij)’ (4.2)1

Ti= PiMijk - - (%.2)

In view of (3.%), (4.2) and the significance of

- 7ij’ Kijk’ appropriate terminology appears to be Céuchz

€.
ij

J

uijk' The twenty-seven cbmponents of Biak are interpreted

J
as double forces per unit area. The first subscript of a Hijk
designates the normal to the surface across which the compdnent
acis: the second and third subscfipts have the same significance
as the two subscripts of Tjk' Typical components of Hijk
are illustrated in Fic, 2. | |
The'linear,eqﬁations of a Cosserat conﬁinuum [2] are
obtained by setting w(ij)" 0. Thgn o(ij) = Tij and ui(jk)=(“
and there remain “i[jk].(the Cosserat couple-stress) and U[ij]:'
which has been regarded as the antisymmetric past of an asym-
metric stress Tij‘ However, in the present theory, the Cauchy
stress, Tij’ is symmetric and o[ij] is the antisymmetric

part of an asymmetric relative stress .oij'
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~ Besides édntaining the linear equatiqnshof a Cosserat
continuum as a speclal'cése, Eqs. (2.5), (3.4) ana (4.1) also
include, as low frequency; very ldng wavé lenéth approximations,
linear versions of the equations of cohpleéstrgss theory [l-lO]
and Toupin's generalization of couple-stress theory [8, SectionT7].
These are considered in Sections 9-12,

If additionél terms were retained in the éeries ex-
pansion (1.6) of the micro—displécement ui, higherhérder
stresses would appear{ In addition to stresses.corresponding
to double forces per unit area, there would'be stresses cor-
responding to n-tuple forces per unit area. All of the latter _
would be self equilibrating;-whereas; of the uijk’ ‘qnly the

“i(jk) are self equilibrating,
5. Constitutive equations

For the potential energy-density we take a homoge-

neous, quadratic function of the forty-two variables cij’
Y3y ¥ijkt
w —-lc €. .€ +ll b YY) +-L a.. 3 »x
2ijke7ij ke 2 Tijke'ij'kt " 2 TijktmnTijkTimn

* diiklﬁyijtkbm + fiﬁk&m‘ijkecm *'gijktyijek&' - (5.1)

Only -% X 42 X 43 = 903 of the 42 X 42 = 1764 coefficients




in (5.1) are independent. The number of ccefficients, the
relations among them and the number of independent ones are

- given in the following table:

Cijkt = Sxeij = Sjikt ° 9x9-60= 21)
Pijke = Breij 9%x9-36= 145
2jiktmn = tmnijk ° 27 x 27 - 351 = 378
d;ikim g %27 =243 ) (5.2)
£isktm = fijkme © 9% 2T - 81 = 162
- Iijke = Jijex ° 9 x9-27= 54
: 303 |
v
From (5.1) and (3.4):
= €. P Gaa Y . .. .
"pa = ®paii®ij ¥ 9ijpa’ii T Tijkpa®iik (5.3),
i o =g ..€..+b.. y..+d .. K..
| = pqij 1] ijpq’ij ° "paijkTijk , (5,3)2

;
g |
g
S
L
%

8
(!

&

B

.

In the case of a centrosymﬁetric, isotropic material
(referred to as isotropic in the sequel) the number of in-
dependent coefficients is greatly reduced. As there are no

isotropic tensors of odd rank, dijk&m and tijkbm must vanis
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The remaining coefficients must be homogeneous, linear func-
~ tions of products of Kronecker deltas. There are three inde-.
' pendent pfoducts of two Kronecker deltas and fifteen indepehdent

products of three Kronecker deltas. .Hence

bijkL = bléijokt+ bzéikéjc + baéiLéjk , o (5.4)2
G::vp =9 6..6, ,+g 6..6., +g b.,6, (5.4%)
ijke 1 i) ke 2 ik jt 20it%jk * , a

a;ktmn = 2,%35%0%mnt 2,%33%km®net 2,%15%n% tn

+a46jk6itémn+ asbjkbimant+ agéjkéinatm

*a 8, :85,0, @ by B8+ a by b8,

+a106i£6jm6kn+ a;;ajbékméin+ a;gékbéiméjn

A AW A R LR R

+a136ibéjn6km+ al4éjL6kn6im+ alséktbinbjm'

R

P
A% 2ot

| | (5.4),
¢ The conditions (5.2) require the six relations

u-l'u-zall) 92'93:

a = a a ma ,a =a a = a
1 s’ "2 o’ s 7’ T 12

leaving eighteen independent coefficients. Thus, the potential

RPN NS IR SRed, o
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energy density reduces to

N A : 1, 1 ‘
W=3A + ue, €. .
2 21855 T V043053 T 2 PaYaiYy B PoYigYi;

.. + ., .. )e. .
33 9, (g * g€y

L
Y2 PYig¥5n t 9y ¢

1 1
+ - .. .. -

3 %5ik ki3t A*1ikkiT 2 AR5k ikt 2 25055 ik
+a_x; .k + L a‘x... . ; 1. K.zspKeanF @ K..oX
stijitkik” 2 gFiji"k kT 2 ?1oFiik®ijkT 21:%15k5 ki

+ 1 1

2 215515k %ik5t 2 2,50 5k55ikt 2 2, Kigktkgie  (5-5)

and the constitutive equations become

T = AS .. ¥ + R |
pa = Mpgfii ¥ Pepq * 9,00qYis * 9. Vg Y Ygp)s  (5.6),
4 2 +b b o+
%pa = Fu8pqfiit 29%pqt PlpqYii * PoVpg * P¥gp 0 (5:6),
Hpqr = a;(xiipégr+ xriiépq)+ aa(xiigépr+ Kiriépq)+ aJiirépq '

. + .. . . . .
+ a;‘pxléqr as(qulépr+ xxplégr)+ agxlqlépr+ é1oqur
+ + + .
ta (xppg + Xqep)* 3, Xprq * 2, Koy + 3, Xpqp-(5:6)

6. Displacement-equations of motion

We may obtain twelve equations of motion on the

twelve variables u; and wij by first inserting (1.10),
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(1;11) and (1.12) into the éonstitutivc equations and then ’
the latterAinto the sﬁress—equations of motion (4.1). There
is no necessity to assume spatially homogeneous material pro-
perties. 1In fact, the coefficients of elasticity and the den-

sities mev be taken as periodic functions, of‘oblique coordi-

nates p#rallel to the edges of the uni; cell, of periods 2di.

This wouidvreprescnt the periodic structure oE”aréfystal
blatticé. However, the equations would then be highly intrac-
- table; whergas some of their main features arc exhibited with

macro-homogeneous material properties, at least for wave-

lengths greéter than the dimensions of the unit cell. The

P70 W ¥ L PR ST S

isotropic case is especially simple; but nevertheless it still
contains many of the novel properties of the macro-homogeneous
material.

In the case of isotropy, the constitutive Egs. (5.6) .

apply and also (2.4). Then, for the macro-homogeneous, iso-

trdpic material the equations on uy and wi are

3

(TR 2g_+ bz) ajajui + (Ai-p~¥2gl+ 29+ b + ba)aibjuj

"(91"' bl)aiwjj-(ga‘* ba)ajtﬁj i-(gz+ ba)ijlij*' £;= p&i, (6.1)

-,
o

. e
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(a,+ 2 (Adhes855% 325k H(a,t 2, ) (05300 s+ 3,30)

+ (a3+ a )8 bkirkj-!— a 9, kwu,éij'* (ae+ als)aj&kwik

+a aakzpu«»a aakzp +gauk6 +g(au+au)

10 K
+ bl(akuk- vkk)bij'* bz(aiuj- wij)‘l- bs(bjui- wji)"" 3pld2'¢'

(6.2)

7. Micro-vibrations

Consider solutions of (6.1) and (6.2) of the form

int

u; = f; =, =0, ¥;5=Ae EE (7.1)
where the A.i.j are constants. Then (6.1) are satisfied
identically and (6.2) become

-— ; 132,12 .
b &;sAy + b A, +b A, =3 pldw®A (7.2)
which admit the following solutions:
dilatational mode:
AJ.J.'-Aaa_“"as'Aij“o’ 1#3: (7°3)’-

m; - 3(31,1 + b+ ba)/p'da : | (7.3)2
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shear modes:

Ajs =By 5 A7 ;Aij=o; i=vj'; _ .'(7.4)1.
mg = 3(1::2 + 1:3)/pv'_c12 ; (-7.14)2
equivoluminal extensional mOAes:
Aii--'O:Aij-'-'O,i#:i: (7-5.)1
w? = 3(b_+b )/p'a® ; (7.5),
' rotational modes:
Aij == By; o (7.6),
of = 306, B/ pe® . (r8),

The restriction of the potential energy-density to

be positive definite fequires
3b1+b2+b3)0,h2+b3>0, bz-bs>0.

Hence 'ma) o and mrv are real frequencies. The corresponding
modes are analogous to the simple thickness-modes of vibration
of a plate. Just as the latter are independént of the coordi-

nates in the plane of the plate, so are the micro-modes inde-
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pendent 6f the'coérdinates X of the three—dimen;ional con-
tinﬁum with micro-structure, Extenéidhal and flexural waves
in'é.plate coﬁple wifh thickness—modes, at high frequencies,
ta fbrm the higheu ~ranches of the dispersion :elations for
a plate. Analogously, we may expect-longitudinal and trans-
verse acoustic waves, in Ehe three-dimensional continuum with

micro-structure, to couplé with the micro-modes to form optical

. branches.

8. Plane waves, long wave—length

Consider solutions of (6.1) and (6.2) with £, and

D, . zero and
u, = ui(x]_’t)’ 11'13 = ¢ij(x1,t) . (8.1)

By means of linear combinations, the twelve equations may be
composed into three independent equations and three independent

systems of three equations each:

shear optical I:
R : --L 2%
(axo + ala)axalw(aa) - (ba * ba)w(za) 3 p'd ¢(23)3(8.2)

shear optical II: the same as (8.2) except that w(za) is

replaced with *aa - *aa:
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rotational optical:

(210 '-.aza)a;az’l'[aa] - (b, - b )y = §P'd2i¢; i (8.3)

longitudinal system:

D | . h
ddu -k 939y -k 81$ =pu ,

it 1212 12 1 12 1~
l D D 1 2D
2161‘11 + zzalalwll ' 224,11 + ‘lczaa].al7 2p d wll’ ? ( )

D N _ 2.-
kalaxux + kszaxalwxx * kaaalalw - k;3¢ =eldY,

=1 D .
where ¥ 3 Wii » *11 = wll ¥ and
kll-k+2p,+2gl+ll»g2+b1+b2+ba,

k = 2a 4+ a + a +~3 a + 2a +~3 a + a + a
2 a 8 2 2

22 10 T !

13 as’

= 6a + 22 + a+ + +a+3 +2a__+3a +a +a
ksa 6 1 2 a 9a‘ 635 2e 3 107 “%a 3 13 14

k -.k =3a +2a +a +3a +a +2a + a + a
. .3 1 2 s 3 3 8 2

23 az 14 rs?

kai = kls = 3g1 +.2g2 + 3b1 + bz + ba’

kia Koy = 2, + b, +b, >
. |
k! =3 (b2 + ba),

kQS =3 (3hl + b2 + ba),

is

?
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transverse syastem I:

’
LA k1231¢(1é)- k1331¢[1z]= Puys
kZLaluz+ zz 1. 1 (12) _ 1I’(J.z) 23 1 x.w[xz] 3p #'(12):“8-5)
o 323
kalal ksza 9 1’(1 ) 33 16111[12] aa [12] 39' 1’[12]:

where
= +
pt+t2g +b ,

= + + +22 +2a +2a +a +a
22 232 3, 7% T % 11 13 24 2s’

x - + a+ 428 =~2a ~2a +a +a
kas' 232 Ay 2a 10 11 13 14 s’

=k = a3 «a 4+a - a
23 a2 a 8 14 1s '’

T g I LA PR L ]

=l
]

=k =b -b,,
al 13 2 3

SUSK JU R

= .
Raz kzx 292"' bz ba’

A
]

2(1:2 + ba) ,
kt = .'a(h2 - ba) s

trangverse system II: the same as transverse system' I except
that u o

(1) and *[12] are replaced with u_, *(17")

and .w[ 18]’ respactively.
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1f, now, (8.1) are specialized to the plane waves

»ui‘ - Aiiexp[i(ixl- ot)], 11].::.'.= Bij. exp[i(&xl- ot)], (.8>.6)

four dispersion relations (o vs. £) result: 2

shear optical waves (s0)(twice):

3 -%- p’d%"‘ = b, + b + (a  + a;a)‘gz : ‘(8.7?
rotational optical Q.aves; (RO):
%p'&"’m"’ é'bz -b_+ (a - al'a')é2 ; (8.8)
| longitudinal wa'vés (1A, LO, I.DO);
kugz - po® kx:ze ' , kxae
x_¢ k&% + k! - 1@ k82 =0;
ks'xg k;zéa l.‘aaeé fksa-. p'd'"’wﬁ
| , . (8.9)
transverse wgves ('rA;v'ro, TRO) (twice):v N |
228" - pu® _ E kb ) E:.ag
| iaa.g i“g? + -i:':a.‘ %pidama ' | iaaga =0.
T‘-a!.g i‘,,g' ' -Easga *:5,— %p.'d’aﬂ

(8.10)
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' These dispersion relations are similar to those en-

‘countered in a second order theory of extensional waves in’
plates [11]. The relations (8.7) and (8.8) are like that for

the second face-shear mode in the plate. The relations (8.9)

~and (8.10) are like that for the coupled extensional, thickness-

stretch and symmetric thickness-shear modes in the plate; i.e.,
one acoustic and two optical branches in each of (8.9) and (8.10).
In the dispersion relations (8.7) and (8.8) for the
non-coupled modes, there are cut-off frequencies Qg and @y
respectively, at which the group velocity (dmjd&) is zero.

Positive definiteness of W requires

210 + 33 >0, 210" s > 0. (8.11)

Hence, the frequencies increase, from cut-off, with increasing
real wave numbers. Below the cut-off frequencies, the wave

numbers are pure imaginary with cut-off values

b2+b3 % . ba—ba %
=21 (2=, &=2i(7=5>], (8.12)
10 13 10 13

iespectively, at zero frequency.

The behavior of the acoustic branches in (8.9) and (8.10), at

low frequencies, is described by wi, wg,

ot (i =1 for longi-
tudinal and i = 2 for transverse): the values, at ® = O and

g = 0, of the first, second and third derivatives of o with




respect to  £. We find

W =Ty, el =0, um 3.""1(2:; - n%),  (8.13)
where : _
V=GR @, VE=Wp, (8.11)

N 892 (39,+ 29,)2

MrA= AR -5 35) "33 Fbr ba)’(s'ls)l

- 29

L= -5 ‘ (8.15),
. 2 4 3

7,§ =2(3 +3 +3 +3+ 35)/(1 +21), 12 = 2(3 +3_)/ii, (8.16)

3

h? = p1a®[m? +(a +B)2)/3p, hZ = pra®(1+82)/6p, (8.17)

Pt . RN MM 2 TP PR S T T T e T :

| b,(3g : 2g,) 2g,
* B ( X ") 8= 1ep (00
';1- %[(1+B)(30+6)a J.+(1+f»‘.cx£5+i32 )a_- %(lﬁ)(l-%-ﬁ)aa-(l-ﬁ)(3a+B)as
- -;]:;(1-5)(1+20+5)aa+ 2aBa11-a(1-B)a1‘+a(i+B)als] R
32- %{-(1-23-3)(3a+5)al- %[1-(2“*ﬁ)2]az+ 11;(1"25-5)233"'(30*3)23‘
+(3348) (142348 )a + F(1+2248)%a + a(3+28)a +m(asp)a,,

+ a(3a+2ﬁ)au+ a(1+a+ﬁ)a“- 0(1'“'5)31,)s |

- (8.19)
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3= %;[_-(1—B2)a2~+' %(hﬁ)zé; %(l-ﬁ)zat_,l ,
ar- 11;[(.1+ﬁ"‘)alo‘(1'?2)(“‘n4am)+ 2(148)%, # 5(1-6)% ],
3= GH1-B%a, H1438%)a, #(148%)a, - F(1428- »%)a, - 3(1-28-F)a ).

Positive defin-iteness of W -req'uire's H, X+ 2;‘1,. Ii > 0, while
hi > 0 by inspection. |

It may be seen that the limiting group velocities
'\'ri are less than those that'would be calculated from the
strain—stiffnesses A+ 21 and p. Thls phenomenon:s due to the
compliance of the unit cell and has been found in a theory of
crys_tal lattices by Gazis and Wall;s [12]. Inasmuch as mi = 0,
the group velocities at zero freguency are maxima or minima.
Which one occurs depends on u;hether» _w]',." is g':.jeater or less _
than zero; and this, in turn, depends on whether 12 is greater
or less than h2, NOV.I. 'Zi and hi are positive quantities |
that are length-properties of the material - depending on
stiffness rétios, density ratio and the size of the unit _éel]..
Although 4 is proi:ably smaller than the 7.1’ ‘thevdcnaity _
ratio p'/p and the stiffness ratios @ and B can make
either 1 .oz_' h the greater. Hence, as the frequency in-
creases fiom zero, both group velocities can increase or both

can decrease or one can increase and the other decrease — depend-

ing on the properties of the material. There is no analogue
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in the theory of homogeneous plates becaﬁse they do not have -
multiple stiffnesses and densities, ‘The phenomenon doesvoccur,
however, in sandwich plates [13] and it has also been found
in a theory of crystal lattices, with complex interatomic in-
teractions, by 'Gazisvand Wallis [14],

At the short wave-length limit (£ » =), the asymp-
totic values of the Qroup velocities of the acoustic branches

are

k o+ k__~lk._-k_ )2 + 42_]?
é% 22 33 22 33 23 (8.20)
1,
3P

from (8.9) and the same expression, with k replaced by X
k4
from (8.10). These can be much smaller than (8.13)1 if

n(kzzk33 - kza) K (kzz + ksa)2 , (8.21)

4(7622'153; R (x, +E )?, (8.22)

which appear to be possible.
Regarding the optical branches in the longitudinal

and transverse systems, the former have long wave-length cut-

off frequencies w, and Wy while the corresponding quan-

tities for the latter are ®, and _. Thus, the two systems

have one cut-off frequency in common. One of the two modes
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is shear and the other is equivoluminal extension, As in the

case of plates, the group veclocities of ali four'optical bran-

~ ches are zero ;tvthe long wave-length cut-off ftequencies ex-

cept in the unlikély circums£ance'of coincidénce of cut-off
frequenciés within a system (b1 = 0 for lonéitudinal modes
or b3 = 0 for transverse modes). Another parallel to the
situation in plates is tﬁat, as ¢ increases from zero, the
behavior of the optical branches is very sensitive to small
changes in the ratios of material properties. One'posSibility
is that both lower optical branches have phase and group veloc-
ities of opposite sign; i-e;, diminishing u; with increasing
€. With further increase of £, the absolute values of the
group velocities would pass through maxima, then drop to zero
énd then incfease; i.e., the dispersion curves first wouldA'
have a point of inflexion and then a minimum.
. A sketch of a possible configuraﬁion of the real
segments of the dispersion curves is shown in Fig. 3. The four
lowest branches (TA, LA, 10, TO) are remarkably similar to
those obtained by Brockhouse and Iyengar [15, Fig. 5] from
ﬁeasuremegts of neutron sCattering_ih germanium.

At the corresponding stage in the development of
equations of high frequency vibrations of plates, it is ex-
pedient to introduce corréction factors to compensate, as well

as possible within the framework of the thebry, for errors
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introduced by the restriétiVe assumption regarding the varia-
tion of displaceﬁent through the’ﬁhicknéss of.the”plate. The'
analogous restriction, ﬁere,'is'the assumed homogeneous de- '
formatién of the unit cell, The vaiues éf the correction fac-
tors are obtained, in the theoronf plates; by matching appro-.
pfiate points, slopes and curvatures of the dispersion curves
with the corresponding quantities obtained from An exact éo-
lution of the three-dimensional equations. Since-the analogue
of the latter does ﬁot exist, 'in the present case, such én
adjustment cannot be made.- An alternative is to uée exper imen-
tal data; o

There is another aspect of the theory of plates that
should be mentioned;  It is possible for a thicknesé-mode
with n + m nodal planes to have a frequency"igwer than one
with n nodal planes.’ For example, in an isotropic piate,
the thickness-shear mode with two nodal planes has a frequency.
lower than that of the thickness-stretch mode with one nodal
plane if Poisson's ratio is greatér than one-third. Thus, a.
better approximation is obtained if a sufficient number of
terms is retained, in the series expansion of the displacement,
to accomodate this contingency [11]. The analogue, in the
present case, is the possibility of the appearancé of a micro-
mode with frequency lower than that of the dilatational micro-

mode (7.3) if additional terms are retained in the series
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expansion (1.6). However, because of the complications that
would ensue, such a step does not appear to be warranted at

" "this time.

9. Low frequency, very lonq wave-length approximation:

Form I

This section‘and the following three are devoted to
discussions and derivations of equations of motion simpler
than (6.1) and (6.2) but limited, in application, to much
lower frequencies and much longer wave-lengths.

As noted previously, when thickness-shear and thick-
ness-stretch deformations and the associated inertias are
taken into account in the theory of plates [16,17,18], thickness-
modes of vibration, analogous to the micro-modes, are obtained

as well as flexural and extensional modes analogous to the

transverse and longitudinal acoustic modes. At low frequencies,
in comparison with the frequencies of the thickness-modes, and
at long wave-lengthé, in comparison with the thickness of the
plate, the coupling of the flexural and extensional modes with
the thickness-modes is negligible. As the frequencies of the
flexural and extensional modes approach zero, the thickness-

shear deformation approaches zero but the thickness-stretch

‘deformation does not; rather, it is the stress associated with




thickness—stretéh.that approaches zéro.,'Thus,thé antisymmetric
‘and symmetric parts of deformation and stress have to be treated dif-
ferently in passing from high_frequeﬁcy equations to the class-
ical, low frequency equations. To ébtain equations valid at
low frequencies in the case of fiéxure, the thickness-shear
deformation is made to approach zero by passing ﬁo a limit as
the associated modulus of elasticity approaches infinity,
The product of the two is indeterminate and this leaves the
thickness-shear stress indeterminate in the constitutive equa-
tions. In the case of extension, the thickness-stress is set
equal to zero and the resulting constitutive equation is used
to eliminate the thickness-strain from the remaining equations.
| In both flexure and ektension of homogeneous plates,

the thickness velocities are set equal to zero in the kinetic

M AT AL T e L

energy, for the low frequency approximation, because their

RN

contributions are negligibly small at the low frequencies to
which the resulting equations are restricted owing to the

suppression of the thickness-shear deformation and the omission

T RO AL R d TS

of the thickness-stretch stress [18, 19]. The same is not
true of non-homogeneous plates. For examplé, in a sandwich

§ plate the rotatory inertia of the facings,;about the middle

plane of the plate, can be of paramount importance, even at
% low frequencies, for certain combinations of stiffness ratios,
r! .

density ratio and distance between facings [13],
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Now, the thickness velocities are analogous to the

" micro-velocities iij: the thickness of the plate is anaé

logous to dimensions d; of the unit cell; the thickness-
shear deformation is ahalbgéus to the antisymmetric part of
the relative deformation (7[ij])7 the thickness-shéar moduli
are analogous to the- bij[kL]: and the stress assdciatedAwith
thickness-stretch is analogous to the symmetric part of the
relative stress (o(ij))' The known process of descending from
high frequency equations of plates to low frequency, long
wave-length approximations can serve as a guide to the treat-.
ment of analogous terms in the equationé of the elastic con-
tinuum with micro-structure. However, regardless of the process
or of the theory of plates, the test of ﬁhe validity of the
resulting equations of motion is that they yield the same dis-
persion relations that are found in the limit As o> 0, >0
for the acoustic branches of the general equations. Thus,'in
the isotropic case, the valuesof w!, m;{ and w:!L", in (8.13),
must be reproduced exactly. Attention will be cénfinéd, here,
to this case because it is much simpler than the anisotrdpic
form and because (8.13) are available for the final test. |
Inspection of (8.13)s shows that, as in the case of
sandwich plates, it is not permissible to discard the micro-
2

velocities &ij' Their effect is contained in the hi and,
as remarked in the discussion following (8.19), h? can be
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less than or greater than 12 depending on stiffness ratios,

 the density ratio and the dimensions of the unit cell, Hence,

omission of the .iij would preclude the reproduction of the
low fredquency behavior, The~remainderlof the process, however,
can follow the analogy with homogeneous plates,

Thus, we let
°(ij) = © (9.1)

Pa TP Yy T 0 (9-2)

and proceed to find the effect of these assumptions on the
remaining terms.

- The isotropic, constitutive equations for qu and

o] separated.into symmetric and antisymmetric parts, are

pq’

-qu = xapqell + aj,e + g 6pq711 292'7(pq) ’ (9-3)

.+ 29 € ot PO Vs * (b2+ b3)7(pq)’ (9.%)

5
%(pa)” 91°pqtii pq “1°pq

ctpal B B Mipa1 - (95)

Then, with (9.2), %[pq] is indeterminate in (9.5) and, with

(9.1), (9.4) may be solved for Y(pa) in terms of €pq’

Y(pq) = = abpqeii + (l—B)epq, (9.6)

where a and B are given in (8318);
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With regard to ¥ijk’ we note first that, since

Yoy =0 U_ =9

'pa ” “pa "pq

and 7[pq] is now zero, we are left with

Vipal = “pa > ¥(pa) = pa ~ Y(pa)’ (9.7)

or, using the expression (9.6) for Y(pq) * ¥© have

V(pg) = *%pqfii * Pepq - (9.8)

Accordingly, ”ijk = ai¢jk = aiw(jk) + aiw[jk] reduces to

N VIV VR ‘
Xi5k ” TRipedyn + B(1B)E, - S(1-B)Ryy 40 (9.9)
where

iijk = aiajuk ='Ejik. - (9.10)

Thus, the part of the potential energy-density that is a func-
ti?n of tijk becomes a function of i;jkz the second gradient
of the displacement. The eighteen components of gijk may
be resolved, in more fhan one way, into tensors whose components
are independent linear combinations of the biajuk: so that

other forms of the energy-density, for the low frequency ap-

proximation, are possible. These are treated in Sections 1l

and 12,
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Upon inserting (9.9), (9.6) and (9.2) in (5.5), we
find Form I of the low frequency approximation for the‘boten-

tial energy-density:

~

keiiejj + HE€35€i5 ta, llkxk]] a,%155%ikx

”~ ~

W> W=

Ol

~ ~ -

+

~

where A and | are given in (8.15) and 31;..35 in (8.19).
The appearance of these coefficients is preliminary evidence
of the validity of the process.

We define new stresses:

Ty = 5??; =Ty 0 o (9.12)
g™ o = By - (9.12),
ijk
Then
?pq alibpqsii + éﬁepq, (9.13),
~p§r"%151(;iip6q¥+ 2xr116pq 1.q pr a (‘plxé + quispr)

+ zagiiirbpq+ 25;2P91+.35(§r§p+ irpq)' (9'13)2
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The Qariational.equation of motion is now obtained
from Hami;ton'é érinciple with indépehdent variations 6ui
alone since, by (9;7)1 and (9.8);_the ¢ij are no longer
independgnt of the u; .

Thé'vafiation of the potential energy-deﬁsity is

6%

i3%€i5 * Mik%%ijke

= leo 6u3+ ul]k i Jéuk,

= 0, [(Typm 95553 )8 I-95 (T gy Y Owe 4 (i 53 958,)
(9.14)

Héncé
£6de=£nj(Tjk-aigijk)bukds—éaj(1jk-6iuijk)éukdv+£ni§ijkbj6ukds.
(9.15)

Now, in the last integral of (9.15), the variation 5j6uk is
noﬁ independent of 6u5 on S: only its normal component

njajéuk is independent. -We separate the latter:

nipijkajaukf 1Jk J&uk+ n. uljkn Ddu, , (9.16)
where ’

The texrms in (9.16) may be resolved, further, in more than one

way. In this section we follow Toupin [8] and reaexve an
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‘alternative resolution [9] for Section 12. Thus, for‘thehfitst

term on the rightvhand side of (9.16), which contains the non-

independent variation Djbuk,- we write

n; u'j.;lk Jbuk D, (n u1Jk6uk) nj xjkéuk (D ny )uljkbuk (9 18)

The last two terms in (9.18) now contain the independent varia;
tion 6uk. For the preceding term, we note that, on the surface
S,

By Stokes's theorem, the integral, over a smooth surface,'of’
the last term in (9.19) vanishes., If the surface has an edge
C, formed by the intersection of two portions, sx and sz,

of 8, Stokes's theorem gives
f Rg®apn’p(CmesnePit it )48 = 95 Injmyuig Jomeds,  (9.20)

where mj = eij 8Ny and the s, are the components of the

unit vector tangent to C. The bold face brackets [ ] in

(9:20) indicate that the enclosed quantity is the difference

between the values on - s1 and sa‘

Finally, we note that, in the first surface integral .

in_(9.15), we may write

“jaiﬁijk = 04,0, it nynyDL; gy ~ (9.21)
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Then, assembling the results in (9.15)-(9.21):we find
j Wav = - ja (r ip.“k)bukdv
+ é[njzjk-vinjnuijk 2nJD1p.le (n;n, DL L jnz)“iﬂgbukds

+ fn njpljknéukds + § [nm pljkléukds (9.22) _

This form suggests, for the variation of work done by external

forces,
'675’1 = kabui‘dV + ff’kbu,;ds + [R Déu ds + $E bu ds. . (9’.23)
v S : S Cc

As for the kinetic energy, the micro-velocity iij’

in (2.3)1, must be replaced by a linear function of macro-veloc-

ity gradients:

i'ij > Byse Sy »  (9.2%)
where | |
_1
b5kt (éa.k j{. k)“‘sij et 2808550 je¥05085%)
(9.25)

80 as to saéisfy'(9.7)i'and (9.8). Then the kinetic energy-
density (2.3)1 becomes '
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pujuj +Z p'dpkmnamunapuk,

3
u
Nl

= 3 Py + %"ap[‘"a;m( REN S ENCIE NN

(9.26)

where

dpkmn_" dthLqpkhqun dmnpk

| =-— dz[b -5 +2a(31+23)6

+52
pm kn pn km pk mn (épmbkn+6pné)un)} :

(9.27)

The total kinetic energy is

J= deV=f[§pu u ~Eb (p'd2 3 )uk]dv+f gp n, xemn (Ot ) 4y dS+

(9.28) -
from‘which
-t ot
6jt'°;7'dt= -{odt{,[puk- 3 1 (p'd;kmn n n)]éu.kdv
tl
_{odt £ —p'npd; (D_i "n+anu )6ukds . - (9.29)

The variational equation of motion is formed from (9.22), (9.23)

. and (9.29), from which follow the stress-equations of motion

and boundary conditions:
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3y (R -3t i) Ficm P 3,788 8 (9.30),

nyT g3 Ryn40 g g-2n gDty gy +(nynDyn, -Dun Y 55
i “3 ) . ’.. ~ s
* § p'nPd;kmn(Dmun+ anun)= Pk’ (9.30)2
nynstigx” R, (9~3°)3

Ingmiiiop =B (9.30),

The displacement—equations_ of motion are obtained
by first replacing_2r-:j_j with aiuj + ajui and Eijk with
aiajuk, in (9.13), and then substituting the latter in. (9.30)1.

The result is
(R+2l) (1-129%) 77 u-3 (1-1292) 9xOu + £ = p(i-h2TY-u + h2Vxxi)
(9.31)
where the 7.1?_ and h;f’_ are defined in (8.16) and (8.17).
Omitting the body force and taking the divergence

and curl of (9.31), we find the equations governing the prop-

agation of dilatation and rotation:

V2(1-12v%)Veyey  =(1-h3V3)Ted (9:32),
V2(1-137%) v2 ¥xu =(1-n2v2)9xi , (9-38),

where the 'i'ri are defined in (8.14). For the plane waves
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(..Y‘B:VXB)=(A,2-)?XP[5-(EQ'£ - (Dt)J, - ’ (9-33)
the dispersion reiationé’ are
of = viE3(1 + 156%)/(1 + ne®), (9.3%)

from which follow exactly the properties (8.13). Thus the
validity of the approximate equations for low frequencies and

very long wave 1ength§ is established. The dispersion rela-

tions. (9.34) are illustrated in Fig. 3 by the dashed curves

labelled L and T.

10. Relatior to Toupin's eneralxzatxon of couple-stress
theory _

The theory of elastxcity with couple-stresses, which
is considered in {5-10], is based on the same kinematics as is
classical elasticity ; but the potential energy-density is as-

sumed to bea function of the strain. and the curl of the étrain

“instead of the atrain alone. 1In the iinear theory, the compo-
nents of the curl of the strain are the same as the components

of the gradient of the rotation: eight indeyendent linearx

combinations of tha eighteen components of the second gradient
of the dinplacmnt. Por the equilibrium case, Toupin

{8, Bection 7] has generalized the theory to include all oighteen
components. If the inertia terms are omitted, (9.30) are iden-
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tical, in form, with Toupin's Eqs, (7.8)-(7211)*. waévef,
although'the form is the same, these are some significant
differences. Equétion§>(9.30) pertain to a low’freéuency;
very long yave-iength approximation to the equations of a
material with micro-structure and the effect of thé micro-
atructuré survives, in both the potential and kinetic energy-
densities, through the contribution of the sjmmetric part of
the relative deformation. This part, T(ij)’ can, in fact be
traced to. ?i' ~and p,

j i
a and B in W. Similarly the contribution of - Y(ij) t°

3K in (9.36), through the cogfficients-

" the acceleration terms in (9.30)'can_be traced through the
e . : i . 2
Vcoeff1c1ents a and B in hijkb and then in aijkt. On
the other hand, Toupin's equations do not stem from considera-
.tions of micfostructure.
The equations of the material with micro-structure

can be reduced to those of a material without microstructure

(i.e., to a micro-homogeneous material) by causing the micro-

Ry B R Ny
PN I ERE N SR

medium to merge with the macro-medium. This may bé accomplished

(just as readily, in this case, for the anisotropic as for the

Y SRTATLR A
S w1 X0

'

Jariign

isotropic medium) by passing to the limit as

e Ly g

* Note that, by definition, Toupin's ~5qu is symmetric in
the second and third indices, whereas | is symmetric in
the first two indices, Note, also, tha% kb should be replaced
by -b in Toupin's Egs. A,B, (7.9) and (7.19).
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instead of (9.1) and (9.2); and, at the same time, p - p!,
80 as to remove the distinction between micro-and macro-den-
sities (i.e., py* 0 in (2.3)2). Then

Yi3 T O Sige > 0%3% T Ry . (10.2)
instead of (9.7)1, (9.8) and (9.9). Accordingly, from (5.1),

WoW =2 t

o 1 o -~ ~ e
. L€y, * = A.. .. '
2 SijkL€ii€xt’ 2 ijktmn®ijk*imn?t fijl':{,mxijkel,m(10.3)

and we define new stresses

7o, = M 3o (10.4)
ij Eeij ji°’ AR

~0 - _OW° _ o

TP =n.,. (10.%)
ijk akijk jik 2

Also, in the kinetic energy-density (9.26),

a;m > 'é;nokn, | (10.5}

pm

In the isotropic case d;m = dabpm and WO, ?gj’ ﬁgjk

have the same form as W, ?.{j’ ﬁijk but the coefficients are

where the d2_ are again given by (2.3)3.

A, By &1"'33 instead of 1,ii, '51...35.
The formulation of the variational equation of motion
proceeds as before and we arrive at the stress-equations of

motion and boundary conditions:




R

a (~ 3k~ ip'ljk)+ =p! uk- 1 0 (p’dgmam{’:]()’ (10'6)1

+(n n,

‘ 1\~ 0
"j Jk niny D“:.Jk “;Dﬂ‘uk iP3Peme Dyny )iy

+ -;-p'npd;m(nmﬁka- nmbiik)z '15,‘: , (10.§)é
ninja(i)jk = ‘i‘: , (10.6)3
.!nimjﬁci’jkl 3?{ . (10.6)‘*

Without the acceleration terms, (10.6) are now pre-
cisely the iinear form of Toupin's equations; and (930),
‘without the acceleration terms, differ only in that the co-
efficients in W and W° (and hence in the stresses) have -
different meanings. However, with the acceleration terms in-
3 cluded, the forms on actually different: the fourth rahk tensor

' a;kmn in (9.30) is replaced by the second rank tensor d;m in

AT

(10.6) so that there are fewer coefficients in the latter.

‘In the isotropic case, it is only necessary to let -
X>A i>p,a+0,8>1, (or 91*0,92*0)(10.7)

in the equations of Section 9, to reach the equations of the

3
@
B
3
o
N
¥
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-
»
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3
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;i:

micro-homogeneous medium. Thus, (9.31) reduces to

(v2u) (2-82v2) g9 - p(i-ﬁ:v’)m +E=p'(2- -;-d‘v’)g, (10.8)
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The dispersion relations for plane waves, from (10.8) are

~li6-

-0, o, o e ~ ,
where {2 and' 1 are obtalned from Li .and Lz, in (8.}6),
by employing (10.7). "It will be observed that the left hand
sides of (9.31) and (10.8) have the same form, but the right

hand sides have different forms because, with (10.7), hi=h2= %dz.
_ 2 '

mi’:vigz(lfﬁigz)/(u%dzez), - (;0.9)

where vi = (M21)/pt, v: = u/p'; and the properties at w = 0,

g = 0 are

@) = vy, o} =0, ol 3v;(B2- 3¢%)  (10.10)

instead of (8.13).

The diffé:ence between the equations of:the micro-
homogeneous.medium and the equations of the low frequency,
very long wave-length approximation is similar to the differencé
between plane strain and plane stress; or, more appropriately iﬁ
the present context, to the difference between eqnations-of 1ow
frequency extensional vibrations of plates with the,thickness
of the plate constrained and not constrained to remain constant.
In the case of equilibrium; the difference is solely in the
physical inéerpretation of the elastic stiffnesses. With stiff-
nesses determined by experiments falling within the restrictions
of the‘QQuations, the two equilibrium theories would be indis-
tinguilhaslé. For example, the numericai quantity that would
be assigned to the stiffness |i, _in one theory, would be
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assigned to | in the other. In the case of motion, however,

there is an essential difference as the number of coefficients
is not the same in the two theories unless g, =9, = 0, which

is analogous to zero Poisson's ratio.

11, Low fregquency, very long wave-length approximation:
Form II .

As noted before, the eighteen components aibjuk

may be arranged in independent linear combinations which form

tensors. One such, indicated by Toupin [8, p. 404}, is the

gradient of the strain:
Z 1 n
aijk = aiejk -'§(bibjuk + aiakuj) = %Kiy (11.1).

The potential energy-density, for the low frequency,
very long wave-length approximation, may be expressed as a

function of eij and gijk by setting

~a ~ A. . ~
Bigk ™ Figk * ki T kil (11.2)

-in (9.11), with the result:

2 - J__ ) ~ A A A A A A PS
W'Woe s Re €yt Ueggegt 30 o Rgqt 8854 % 0t 3 %y g

A

~N A A AN ~N )
+ a“}jktijk+ 3%, 5 Kqi (11.3)
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where

a =4fa ,3 =33 -3 ,8 = -234'+ 2a_. (11.4)’

A _ aw v => ~

Tij = 3 5 Ti - (llfS)1

A W _a

u'ijk- > = u'ikj ’ (11.5)2
ijk

whence

?pq = Xbpqgii + Eﬁepq , (11.6)1
A 1A A ~ -~ ~ A
par =2 3,(0pqkrist B Riip? Orp¥ays) + 280554

~ ~ ~ ')
+ 3 (Bpgk et SprRisg) + % B8 (Rt qrx) (11 6),

The variation of tljxe poteﬁtial energy-density is
A - A S

=34 1(R 4 1"13k)‘5“k1 =34 (T 1“1jk)°“k*a (uzjkajbuk) (11.7)

Now, (11.7)5 has the same form as (9.1’&)s and the kinetic energy

density (9.26) is unchanged. Hence, the variational equation
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'wherer

of motlon has the sane form as in Sectlon 9 and leads to bound-

ary conditions like those in (9.30) and . stress-equatlons of

motion:
aj(?jk- aiu k)+ puk- 3 B (p'a;kmn m n) : (11'8)

Recalling that ﬁijk = ﬁjik whereas ﬁijk = ﬁikj’ the quantity
in parentheses on the left hand side.of (9.30)1 is not'sym-
metric but the corresponding quantity.in (11.8) is symmetric.
The latter'is a ﬁore convenient forﬁ'for the introduction of
a stress function of the Airy type.

To get the dispiacement-equation of motion, sub-

stitute (11.1)2 and (1.10) in (11.6) and the latteriin (1..8).
The result is

(R+2i)(1-2272) 77 -1 (1-23V7) ¥x¥xu + F = p(§-h7TV-H +hOTxPA) ,
(11.9)

2= , ~ N ~ ~ ~ ~ A2= A ~ -~ ~
21 2(a1+a2+a3+a4+a5)/(k+2u), L2 (aa+2a‘+a5)/2u. (11.10)

In view of (11.4), 2§ = ii, so that the displacement-equations

of motion (11.9) and (9.31) are identical.

12. Low frequency, very long wave-léngth aggroximation:

Form IXIX

For some purposes it is advantageus to separate the

curl of the strain (or. the gradient of the rotation):




e
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ki35 ~ eijaLemi T2 JLmaxaL m’ (12’1)

from Biajuk as x;y is the part of aiajuk that gives rise
to couple~stresses. The double stress is separated, thereby,
in to a non-self-equilibfating part and a self-equilibrating
part. Now, ‘Eii =0 . Hence ¥,. has only éight independ-

1]
ent components. (They are the components of the dyadic p3

- in Reference [9}.) The remaining ten linear combinations of

the 8 d. uk ‘were considered separately by Jaramlllo [20].

They can be expressed as

1]k§ ‘ljk 3 LLJ‘kL 3 1Lk‘JL 3(axajuk+ aka u + aJakui)
(12.2)
Thus, ;ijk-s :kij" :jki = ;jik’ i.e., iijk .is fu;ly sym-
metric.
The potential energy-density, for the low frequency,
very long-wave-length approximation, may be expressed as a

fungtion of eij’ xij'and X. ik by setting

ij

A = i - 1 -
Ri3k ™ Xijk T 3 ®ie3®ke” 3%ekFiL (12.3)
in (11;3). The result is

—-.lﬂ ~ — o —— -—
W W 2 xeiiejj+ “eijeij+ 2d1xijxij+ 2dg‘ij‘ji

[V 7]

ARyt TR gt ey R R, o (12.8)
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where
188 =-2a +4 +3 +63 - 33,
1 2 3 - 4
~ A - ~
1832 =_2a1 - 4a2 -3, 3 = 2(a + a_ + as)’
a =a +a F=3 +43 -23
2 . s’ 3 a a, "3,
The definitions
-~ _ oW -
T,. = =T.., -
ij Beij ji’
vy = aw vy —
Kijg =3g,. > Pii = O
ij
- = aﬁ =- == =
Pipe = 5r . ki3 ki = Hjik’
- hijk A

where ﬁij is the couple-stress deviétor, lead to

- -~ o~

qu = Képqqu + 2uepq R

0 = x + T+ e K.
Ppg = H Xpq *+ 8 kg, + Te o4,

- - ,m S o = - 2
Ppgr™ 3, (%13,00q% Xj3p8qrt Xiiqdrp) * 23 %pqr

+'% z;ij(bpqeijr+ 6qr°ijp+ 6rp°ijq) .

. (12.5) 

.(12.6)1

(12.6)

(12.6)3

(12.7),

(12.7),

(12.7),

The variation of the potential energy-density now

takes thc fofm
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ij i5%0%15%

= 35 [(F -3t ) ow 1-35(F .- i;;jk)§uk+ai(a;jkauk),(12.8) -

where

:.l - =
WikT 2 Cqettiet Bijx - - (12.9)

Again, (12.8) has the same form as (9.1%) and so we can find
stress-equations of motion and boundary conditions of the

- Lad '-*
same form as (9.30), but with B3y replaced by Hijk: Such

a form of the boundary conditions cannot be compared directly

~ with the results of Reference [9] because, there, one of the

independent variations was taken to be the tangential'éom-
ponent of rotation - which here is embedded in the normal
derivative Déuk. To get the alternative form of the boundary

conditions, we can return to (9.16) and further resolve:

Ddu, '-26winjeijk+ Dk(nibgi)-(nkni)éui+ nbe o (12.10)

where "1(5'% ei&m@&“m) is the rotation and €, (not summed)

is the normal component of strain ninjeij' Then integration

' by parts and application of the divergence theorem and Stokes's

theorem leads, in the notation of Reference [9], to
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R ,~ ~ o~ . LT s.
+$ [ 58 +Hsxp) (o + p-i-pn)]-buds , (12.11)

where s is a unit vector tangent to the edge C.

The variation of work done by external forces is

_now taken to be

W =[ F-5udVv +[(P-5u+Q-dwx ntRéec__)ds+¢$ E-buds . (12.12)
1 v ~ ~ s "~ ~ ~ ~ nn c ~ ~

Here Q is tlie tangential component of the couple-stress: vector
and R is a double force per unit area, without moment, normal

to S.

~The variational equation of motion then yields the

stress-equation of motion

vE+

Ol

PXV--9-5-Y + F =pii- 3V-(p'8%:VE)  (12.13)

and the bounaary conditions

pF+E XY G-Wi,,)-(V-E) -p-p-Fx[px(n-F+p-§ -pn) I+ o' 3%: 08,




.jsh-

pppi2n(ngon)xn =9,  (12.14)

pn:g-n = R, (12.11;').3

1 - .. |
[5 #pps Hsm)-(ng+negemn)] =2 . (12.14)

The displacement equation of motion is obtained by
substituting {1.10), (12.1)2 and (12.2)2 in (12.7) and the

latter in (12.13)}. The result is

.('i+a'1)(1-ii\7"‘).\z Z‘B‘ﬁ(l‘izvz ) UxVxu+F=p (ii‘hi.yy -.i.i+h§yxy><§) » (12.15)

where : | | -
Iia( 3a+ 252 )/ (R+21), Zz=(3al+51+252-i')/3ﬁ. (12.16)

In view of (12.5) and (11.4%),

1T =12 =12 =13, say: - (12.17)

so that all three forms of the low frequency, very long wave-
length approximation yield the same displacement-equation of
motion. Necessary and sufficient conditions for positive

definiteness of W(=W=W) are
E>0, R+Fd> o0,
a1> o, -al< aa< al s

a>o, 3@+ 232'> o, £< 0. (12.18)

Hence &g > 0 and we have already seen that h}'_ >0,
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The equations that were considered inkReference [9]
are'obtained‘from those of this section by setting k:ijk =0
in the potential energy-denéity and pt* =0 'inAthe kinetic
energy density. Accordingly, the limitation to low frequenéiés,
long wave-lengths and large dimensions is more severe than

was apparent previously.

13. Solution of the approximate equations of equilibrium

In this Section it is proved tkat any solution, u,

of the équation

(h+81) (1477 W p-u(1-L57) PP + £20 , (13.1)
in a region V bounded by'a surface S, can be expressed as

. 1 2. :
u=5B -42Vv.B - 5(1:1-;1\!2)_?[:.(1-{,:%)3 + B,], (13.2)1

>~
where _
ﬁ(l-t.:va)vzg =-F, (13.2)2
~ —p2g_ = . 22 - 2¢,
n(1 L2 )vzso r-(1 lez)g 4329 F, (13.2)3

k, = (AHL)/(R+2L)
and r is the position vector,
" Consider a field point P(x,y,z) and a source point

a(¢,n,) and define - _
-1
by, = - £ r “ugdv (13.3)




" where

T3 =(x8)7 + (y-m)® #(2-0)* , avge dganas.

Then V?U = u (3, p.210], or

WU - gxgxU=u  (13.B)
Define | _
y=9.U,HB=-9xy, (V-H-=0). (13.5)
fhen, from (13.4%),
u=w + YxH, VH=0 (13.6)

which is Helmholtz's resolution. Substituting (13.6) in

(13.2) , we have |
i T;.V"’[k(l-l,ivz_)w +(1-L:V2)gx§] +F =0, (13.7)
where k = (A + L)/ . Define

f r“e-r‘/l'z-[k(1-L2\?2)w+(1-z2v2).v>a] dv,. (13.8)
v t 1 =T 2 ‘='=7QTQ e

lm.:gi',
Then [3, p. 210]
(1-&262)5; = k(1-23v3) W +(1-23v*)pa  (13.9)
and, from (13.9) and ('13.7),
i | ‘ B(1~22v3)v%p = - F . (13.10)

: Also, the divergence of (13.9) yields
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(1-2v)7.pr= K(-292) 7 (13.11)

Define

- 2ky* = r-(1-12V%)B. - (13.12)
Then, using (13.10), we have

aﬁ(l-zivz)v2¢*= nciy-g—5-(1-Libz)g+2u(1-:,§v2)y-g'. (13.13)
Define
B, = 2k(y-¥*) (13.1%)

and find
ﬁ(l-zivz)vzao = 5.(1-Liv2)§ - ufy.p (13.15)

by using (13.11) and (13.13). Also, from (13.1%) and (13.12),

2k§/=£-(1—&§‘72)_§'+ B, . (13.16)
Now, define
D = p'-12Vy-B'-k(1-LIV) W (13.17)

By (13.11), V-D = 0; which is a necessary and sufficient
condition for the existence of a function g* such that

Yx H* = D, i.e.,

\z_xg'a.g'-:,;vg-g--k(l-civa)w . (13.18)
Making use of (13.9) and (13.11) we find
(1-2373)poi*=(1-L2V2) D - (13.19)

Next, define

FE UxE-TXEY (13.20)
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-and note that, by (13.19) and (13.20), -

(1-47v)B" =0, v-B"=o0. . (13.21)

From (13.20), using (13.18) and then'(i3.16),

_ 1 i, -
ini—'g"-l»‘g'-l,;vy-g'— -2-(1-Liv2)g[5-('1-czv2‘g-)+ B,J. (13.22)

Then substitute‘(l3;22) and (13.16) in (13.6)1 to get
= nh \ " A.. - 2 .
4 =B"4+B'-L2VV.(B"4B' )~ ok -t37%)¥(x (1-1,:v2)§'+a°]. (13.23)

Finally, define

B=pB'+pB" | (13.24)

in view of (13.21), we may write (13.23) andr(13.10) in the
form of (13.2)1 and (13.2)2; and (13.15) is already in the

form (13,2)3. Thus Egs. (13.2) are a complete solution of
(13.1). 1f Li = 0, (13.1) reduces to the equilibrium equation

of couple-stress theory and (13.2) is the solution found in

[9]. 1If both Li and _L: are zero, (13.1) is the classical

equation of equilibrium with body force and (13.2) is the

.solution found in [21]. 1If, in addition, the body force is

zero, (13.2) is Papkovitch's solution [22]. The proof follows,
generally, that in [23] but with an improvement as a result
of an illuminating criticism by E. Sternberg.




14. :Concentrated force acco*dlng to the approx1mate
equations

In an infinite regiocn ‘V, let the body force be

zero outside a finite region’ Vb which contains the origin

A concéntrated

and a non-vanishing field of parallel forces P,

forr~ is defined by

P= lim | Fydvg - o (14.1)
- vrov " ¥

In [9] 1t was shown that, in an infinite reglon, solutions of

equatlons of the type (13 2) and (13.2)3 are

N - rl/L o -
bip = fr}(1-e *JEavg (1%.2)
B, ‘f,r; (e * Hiz'-(1- Yo Zgldg, (1343

where r'=\/£2+ n2+ 2 |

Now lim r =1r , lim r' =0 . (14.#)
: : v>0 * v+ 0 -
.o o
Hence, for the concentrated force, (14. 2) reduces to
-x/4,
unun = r Y(1-e - | % . (14.5)

In (14 3) the term in the integrand of the form ﬁ(r A 4

Ea is

transformed according to

[V30 B mf 1 5g: (¥2)-Eg: Qwc:v [¥m-Egis-lEg Tgyavg: (- 6
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The surface integral in (14.6) vanishes because F = 0 outside

vb. Also

oty § Eaf(F )W = - B ). ()

Hence, for the concentrated force,

~ 2 -1 /L,

miB = Ltggy[r (1-e )1 . (14.8)
Equations (14.5) and (14.8) constitute the solution of (13.1)
for the concentrated force. If Lf =0 then B, =0 and

the solution reduces to that found in [9]. If,'in addition,

L: = 0, the solution reduces to Kelvin's [4, p. 183].
15. Surface effects

It has been noted, in Section 8, that the dispersion
relations, for the material with microstructure, have forms
similar fo those for a second order theory of extensional
vibrations of plates [11]. Interesting types of motion which
have been fouﬁd to occur at a free edge of a plate, may there-
fore be expected to appear at a free surface of a material
with micro-structure. Examples are: trapping of energy, at
a boundary, upon reflection of waves [2}]; additional modes
of vibration with deformation localized at the boundary [24]:.

additional types of surface waves at high frequencies [25].
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* Toupin and Gazis [26] have shown that; accordiﬁg

to Toupin's generalization of couple-stress theory [8, Sec-

tion 7], a free sutface,'of a non-centrosymmetric material in

a state of homogepeous.initial stress, will draw in or push out
in a thin'boundary layer as observed experimentally by,Gérmer,
MacRae‘énd Hartman [27].7 The eqﬁations of the elastié material
with micro-structure admit this phenomenon even in centrosym-
metric materials. To see that_this‘wiil occur, first add the ini--

tial stress terms

ceE.. + boy

o ii ii

to the potential energy-dénsity (5.5) of the céntrosymmetric,

isotropic material. If c¢_ and b° are taken to be constants

Q

of the same magnitude but opposite sign, there will be a homoé
geneous, isotropic initial stress, Tij»and oij’ with no
traction tj, according to (4.2)1, across any surface of an

infinite body under no external forces. waevef, from the

‘equilibrium equations (#.l)2 (with ¢jk and $Lk zero) there

must be nén—vanishing uijk' Hence the surfaces, say x1='i h,

of a plate will have double tractions Tjk acting on them,

according to (h.2)é. ‘The removal of these double t:actions,'

8o as to free the surfaces, will result in deformations governed
by (8.4) with the right hand sides set equal to zero. Now,

the system of qu.-(S.h) is equivalent to a sixth order equa-

tion of the form
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where ﬁi and Ei are the non-zero roots, probably conjugate

complex, of (8.9) with = = 0, Deformafions goberned by an
equation of this form are localized at the'surfnce, If the
plate is replaced by a sphere, thé analogous solution is that'r
for surface tension on the ‘sphere.

In the case of problems of equilibrium and'ﬁrobagation

of cracks [28], the equations of the elastic material with

‘microstructure will supply an energy accompanying the formation

of new surfaces,

In stress concentration problems, simiiar additional
boundary layer phénomena will occur - over and gbove those by
which solutions in couple-stress theory [9, 10] differ from |
those of classical elasticity. The added eiffects may alter
the conclusions that were reached on the basis of couple-stress

theory.

Acknowledgement I wish to thank Dr. R. A. Toupin for many
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